Please check the examination d Candidate surname		ur candidate information
Pearson Edexcel Level 3 GCE	Centre Number	Candidate Number
Sample Assessment Material		
(Time: 1 hour 30 minutes)	Paper Referer	nce 9FM0/3A
Further Mathe Advanced Paper 3A: Further Pur	CUSASINY	Jun
You must have: Mathematical Formulae and Se	tatistical Tables, calculato	Total Mark

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for algebraic manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear.
 Answers without working may not gain full credit.
- Answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 9 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

S61296A
©2018 Pearson Education Ltd.

$$\frac{1}{a^2} - \frac{y^2}{b^2} = 1$$

$$\frac{1}{a^2} x^2 - \frac{1}{b^2} y^2 \cdot 1$$

differentiate

$$\frac{2}{a^2} \times - \frac{2}{b^2} y \left(\frac{ay}{ax}\right) = 0$$

$$\frac{2}{a^2} \propto \frac{2}{b^2} y \left(\frac{ay}{ax} \right)$$

$$\frac{ay}{ax} = \frac{2x}{a^2} = \frac{2y}{b^2} = \frac{2x}{a^2} \times \frac{b^2}{2y} = \frac{2b}{ya^2}$$

Mtangent : bseco/ atano

line eqn: Y-Yi=m(x-xi)

→ where (x,, y,) is known

COULD! DAI LIME

→ m is gradient

$$\overrightarrow{OR} \times \overrightarrow{OC} = \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} \times \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$$

$$\Delta OBC : \frac{1}{2} \begin{pmatrix} 0 \\ 5 \\ 5 \end{pmatrix}$$

$$\frac{1}{2} \sqrt{(0)^2 + (5)^2 + (5)^2}$$
Pythageras

$$\frac{1}{2}\sqrt{50'} : \sqrt{25 \times 2'} : \frac{5\sqrt{2'}}{2}$$

3 a. t-tan (x) sin(x)	26	
	Ht.	
Cost×		
	1tt ² end of Q	
lantx): U	
): <u>U</u> 1-t ²	

$$\frac{4 + an(x) + 3 \cot(\frac{x}{2}) \sec^2(\frac{x}{2}) = 0}{\frac{remember | dentity|}{\tan(x) + \frac{3}{2}} \left(1 + \frac{an^2(\frac{x}{2})}{2}\right) = 0}$$

$$4\left(\frac{2t}{1-t^2}\right) + \frac{3}{t}\left(1+\left(t\right)^2\right) = 0$$

$$\frac{8t}{1-t^2} + \frac{3(1+t^2)}{t} = 0$$

$$\frac{8t(t) + 3(1-t^2)(1+t^2)}{t(1-t^2)} = 0$$

$$\frac{8t^2 + 3(1-t^4)}{t(1-t^2)} = 0$$

$$\frac{8t^{2} + 3 - 3t^{4}}{t(1-t^{2})} = 0$$

$$\frac{8t^{2} + 3 - 3t^{4}}{t(1-t^{2})}$$

$$\frac{8t^{2} + 3 - 3t^{4}}{t(1-t^{2})} = 0$$

$$\frac{8t^{2} + 3 - 3t^{4}}{t(1-t^{2})}$$

$$\frac{8t^{2} + 3 - 3t^{4}}{t(1-t^{2})} = 0$$

Δ	104
b. $3t^4 - 8t^2 - 3 = 0$	
$(3t^2+1)(t^2-3)=0$	

$$\frac{t^2 \cdot -1/3}{x} \quad \frac{t^2 \cdot 3}{t^2 \cdot 4}$$
Sois so disregard

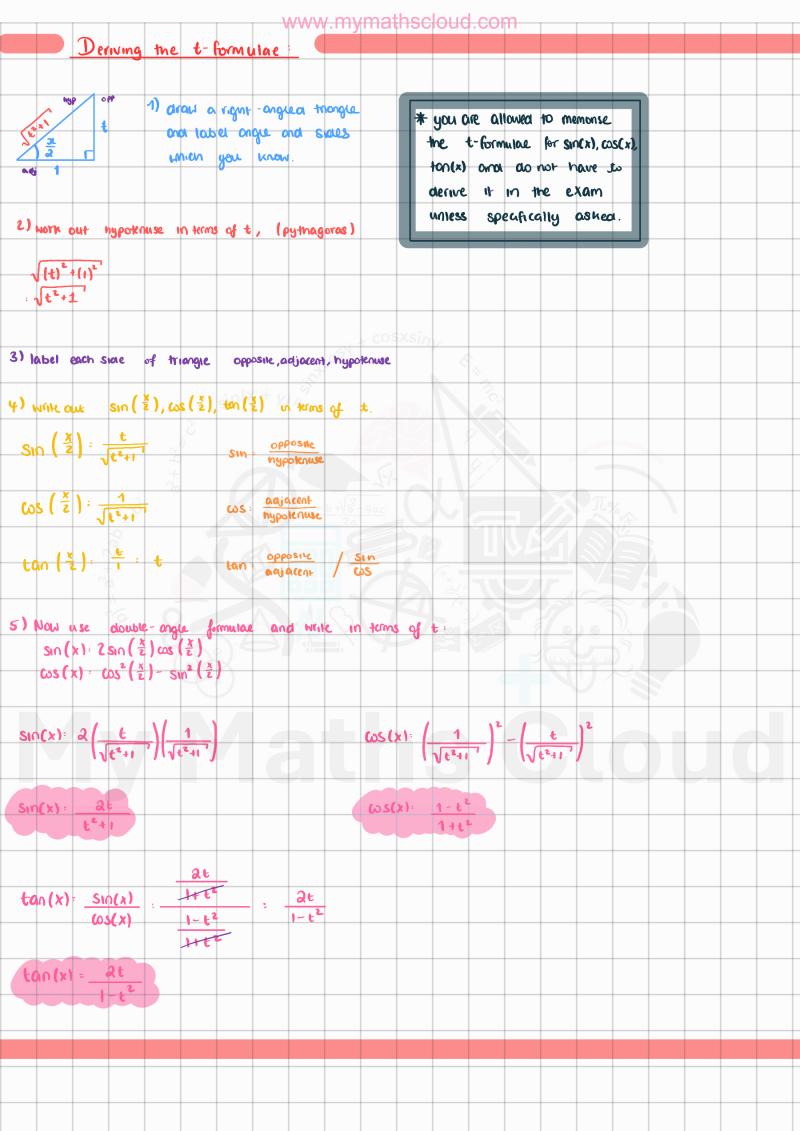
remember that
$$t:\tan\left(\frac{x}{2}\right)$$
, rearrange and solve for ∞

$$\frac{x}{2} : \operatorname{Archan}(\sqrt{3}) \qquad -\pi < \frac{x}{2} \leqslant \pi$$

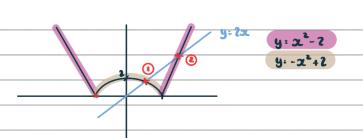
$$\frac{x}{2} : \frac{\pi}{3}, -\frac{2\pi}{3}$$

$$\operatorname{An} - 4\pi$$

$$\pi : 3, 3$$


$$\operatorname{change range}$$

$$\operatorname{to hi} \frac{2\pi}{2}.$$


$$\frac{x}{2} = \alpha rcran \left(-\sqrt{3}\right) \qquad -\pi < \frac{\alpha}{2} < \pi$$

$$\frac{x}{2} = -\frac{\pi}{3}, \frac{2\pi}{3}$$

$$\alpha : -\frac{2\pi}{3}, \frac{4\pi}{3}$$

4.

122-21 >2x

Both egas inhersect at 2 points.

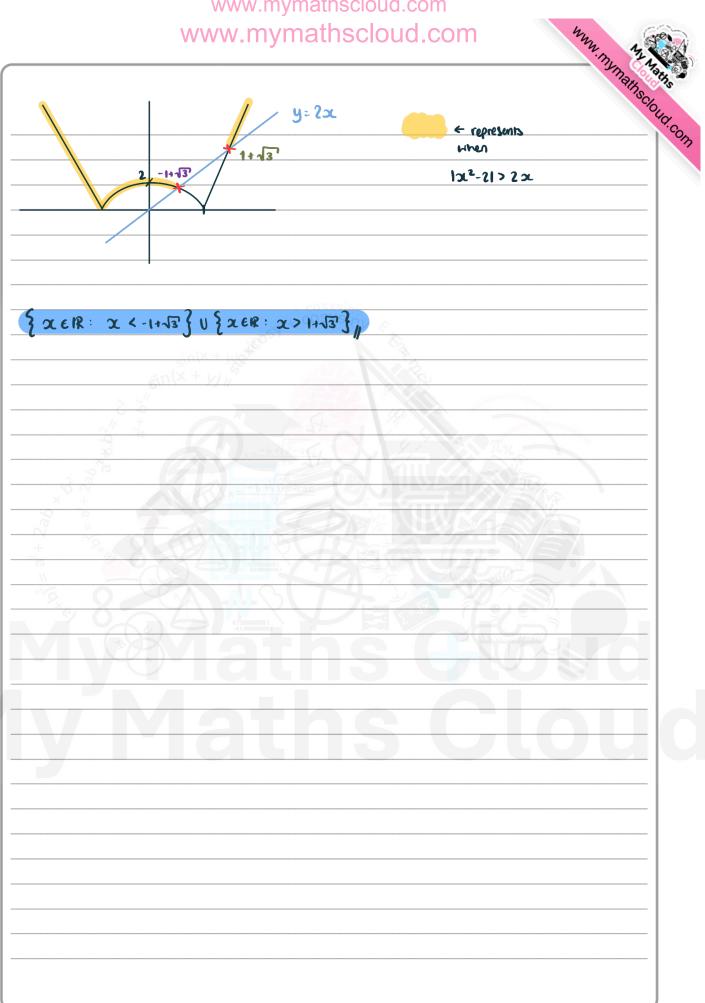
- 1 When y=-x2+2 and y=2x inkisect
- 2 when y=x2-2 and y=2x intersect

 $\frac{1}{1} = \frac{2x - x^2 + 2}{x^2 + 2x - 2 = 0}$

$$\alpha = \frac{-(2) \pm \sqrt{(2)^2 - (4)(1)(2)}}{2} = \frac{-2 \pm \sqrt{12'}}{2} = \frac{-1 \pm 2\sqrt{3'}}{2} = -1 \pm \sqrt{3'}$$

graphically $2 \neq -1 - \sqrt{3}$ (-ve. word).

: 0 = -1+\3'3


 $211 22 : x^2 - 2$ $x^2 - 2x - 2 : 0$

$$2 = -(-2) \pm \sqrt{(-2)^2 - (4)(1)(-2)} = 2 \pm \sqrt{12} = 1 \pm 2\sqrt{3} = 1 \pm \sqrt{3}$$

$$2 = 2$$

graphically 26 # 1-13 (-v.e. word).

:. (2) = 1+ \(\sqrt{3}\)

WWW. My Maths

00.						40
i. a. (bxa)	remember cyclic		1)-0		2	
b· (axa) b· (axa)	property	a. (bxc	move each	msiont with	 	
B. (D) buogner	perty lif 2 vectors	b. (ax	4).0	(C)	all mean	
* U	popu = 0)		nove each o	10 K	some thin	3
		0 · (0 ×	1 1 - A	anstrant uge	}	
· a (bxa)=0/		u (u x	b); ()	•		
		SYL COSX	Sin.			
ii. $a \times b = a \times c$	M. Come Ca	do l				
	x C) = O [actor)	se	3	3		
Q × (b - c) =	Om(x + V) 1/2			P		
	2					
Since a≠0		#0, a	must be	porallel	n order for	×
a × (b-c) = (b+Vb-44C/			%	
b-c = 2a	(shown)	+V8=4ac				
× +	A	20				
20 11	7					
			Hotel	7/9/9		
"						
÷2 0	A AL	317				
20						

$$\left(\frac{\alpha y}{\alpha x}\right)_{0}^{2} = \left(1\right)^{2} : -1$$

$$h=0.05$$
 and need to find y when $x=0.1$
 $h=0.05$ $0.0=0$ $0.0=0$ $0.0=0$

$$y_1 \approx y_0 + h \left(\frac{ay}{ax} \right)_0$$

 $y_1 \approx 1 + \left(0.05 \right) (-1)$

$$X_1 = 0.05$$
 $Y_1 = 0.95$

$$\left(\frac{dy}{dx}\right)_{4} = (0.05)^{2} - (0.95)^{2}$$

$$= -0.9$$

Y2 = 0.905

y = 0. 905 //

b.
$$\frac{\alpha y}{\alpha x}$$
 $\frac{\alpha^2 y}{\alpha x^2}$ $\frac{\alpha^2 y}{\alpha x}$ $\frac{\alpha^2 y}{\alpha x}$

$$\frac{\alpha^3 y}{\alpha x^3} : 2 - 2 \left(\frac{\alpha y}{\alpha x} \right)^2 - 2 y \left(\frac{\alpha^2 y}{\alpha x^2} \right)$$

c.
$$\chi_0 = 0$$
 $\gamma_0 = 1$

$$\frac{ay}{ax}\Big|_{(0,1)} (0)^{2} - (1)^{2} - 1$$

$$\frac{d^2v}{dx^2}\Big| \qquad 2(0) - 2(1)(-1) = 2$$

$$\frac{\frac{3}{a_1 y}}{a_2 x^3} = 2 - 2(-1)^2 - 2(1)(2) = -4$$

$$| y = | y_0 + | x + | \frac{\alpha y}{\alpha x} | + | \frac{x^2}{\alpha x^2} + | \frac{\alpha^2 y}{\alpha x^2} | + | \frac{x^3}{3!} + \frac{\alpha^3 y}{\alpha x^3} | + \dots$$

$$y : 1 + 2(-1) + \frac{2^2}{2}(2) + \frac{2^3}{6}(-4)$$

A: 1051.161898

1et
$$f(n)$$
: $\ln \left(1 + \frac{100n}{1000}\right)$; $\ln \left(1 + \frac{1}{100} \times n^{-1}\right)$
 $1 + \frac{100n}{1000}$: $\frac{1}{1000}$

$$\frac{1000^2}{1 + \frac{r}{1000}} \div -\frac{1}{1} \cdot \ln \left(\frac{r}{100} \times \frac{r}{100} \right) \cdot \ln \left(\frac{r}{100} \times \frac{r}{100} \right)$$

$$\frac{\lim_{N\to\infty}\left(\frac{v}{100}\right)}{1+\frac{v}{100n}} = \frac{v}{100} \qquad \frac{(as n\to\infty)}{1+\frac{v}{100n}\to 1} \qquad \frac{v}{100n}\to 0$$

$$\frac{1+\frac{v}{100n}}{100n} = \frac{v}{100} \qquad \frac{1+\frac{v}{100n}\to 1}{1+\frac{v}{100n}\to 0}$$

ln(y): r	= equating from earlier	Scholad Co.
T	, J	373
y = e 100	solve in hims of y	

HARTHS CLOU

```
8a. x= w+
                  , affectable
 t ( W+ t and + ) + 2t2 (Mt) = (Mt) (2t+1)
                                            sub in a and
  tw + t2 dw/at + 2t3 w = 2t2 w + tw
                                           worked out hom above to
   t2 aw/at + 2t3 w = 2t2 W
                                            create new eg" in times of
   an + atu = au
                                                 w and t.
    aw + 2 tw - 2 w = 0
                         (Shown)
b. du = 2W - 2tw
   OH : 24 (1-6)
                      Seperate
                      variables
   1 an = 2(1-t) at
  - au : Jeli- +) at
                      integrale both
                      sides to eliminate
                                         dw and at
 ln (w) : 1 2-26 at
en(w) = 2t - t2 c
  get had of en
W: 6 15- F3+C
     1 x min = x x x lindex law)
let A=ec as
                      e<sup>C</sup> is a
                                    constant
```


W: Ae 2t-t2	
CONVER BOOK IN LAKE A PLANT IN	
2 : De lt-t2	
t	
21-42	
X: Ate 2t-t2 (Shown)	
COSX	sia _y
- COSA	siny &
When t=2, 2c=10	
an(x + V)	
10: A(2)e	
10 · 2Ae° · 2A(1)	
10:2A	
0 N = 4ac	
×A:5	
x:5te ^{ll-t²}	
+ ×	A forth of the first of the fir
QX .	
@ max. displacement, at =0	remember product rule & chain rule:
x:5te ^{u-et}	$\frac{a}{ax}(\alpha\beta) = \alpha\beta' + \alpha'\beta$
X · See	
<u>ax</u> = 5e ^{2t-t2} + 5t (2-2t)e ^{2t-t2}	$L \frac{d}{dx} (f(g(x))) = f'(g(x))g(x)$
01	
V V Z U 	$\frac{d}{dx}\left(e^{f(x)}\right) = f'(x)e^{f(x)}$
se 2t-t2 + 5t (2-2t)e 2t-t2 = 0) 2	dx /
$\frac{1}{2} + \frac{1}{2} \left(\frac{1}{1 - 1} \right) = \frac{1}{2} + \frac{1}{2} \left(\frac{1}{1 - 1} \right) = \frac{1}{2}$	(lt f(x): lt-t2
5+5+(1-2+)=0	f'(x) = 2-3£
5 + 10t - 10t2 = 0	
10t2-10t-5:0) +5	ax (eu-12): (1-12) eu-12
//	
162-16-1.0	
150 lve for e via quadratic formulae	

$$\frac{1}{2} \cdot t : \frac{1+\sqrt{3}}{2}$$

To find max. displacement, sub in +-value into a equ

$$2\left(\frac{1+\sqrt{3}}{2}\right)-\left(\frac{1+\sqrt{3}}{2}\right)^{2}$$

$$2 = 5\left(\frac{1+\sqrt{3}}{2}\right) = 2$$

2: 16.23823545

max displacement . 16.2 cm

e. as
$$t \to \infty$$
, $e^{2t-t^2} \to 0$

$$5 t e^{2t-t^2} \to 0$$

is as t > 00, displacement tends to O 11

$$\frac{16}{3}\sqrt{3} \div 2 \div \frac{8\sqrt{3}}{3}$$
Quistance from y-axis to point A or D.

$$\mathfrak{D}\left(\frac{8\sqrt{3}}{3}, \gamma\right)$$

$$A\left(-\frac{8\sqrt{3}}{3}, \gamma\right)$$

Since AB and CO are directives: $x = \pm \frac{a}{e}$

we know $x: \pm \frac{8}{3}\sqrt{3}$ are directness

Conics

a.	8/3	
e	3	

We know a=26

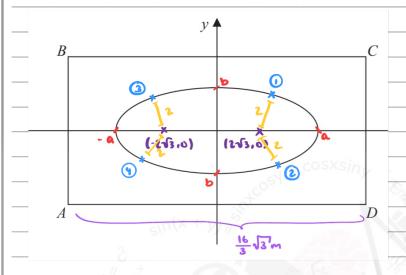
use (ccentrary formulae $b^2 = a^2 (1 - e^2)$ $b^2 = (2b)^2 (1 - e^2)$ $b^2 = 4b^2 (1 - e^2)$

b ²	. 1	-	,2
462	-		
	7		

	Ellipse	Parabola	Hyperbola	Rectangular Hyperbola
Standard Form	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	$y^2 = 4ax$	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$xy = c^2$
Parametric Form	$(a\cos\theta, b\sin\theta)$	$(at^2, 2at)$	$(a \sec \theta, b \tan \theta) (\pm a \cosh \theta, b \sinh \theta)$	$\left(ct, \frac{c}{t}\right)$
Eccentricity	$e < 1 b^2 = a^2 (1 - e^2)$	e = 1	e > 1 $b^2 = a^2 (e^2 - 1)$	$e=\sqrt{2}$
Foci	(±ae, 0)	(a, 0)	(±ae, 0)	$(\pm\sqrt{2}c,\pm\sqrt{2}c)$
Directrices	$x=\pm \frac{a}{e}$	x = -a	$x = \pm \frac{a}{e}$	$x + y = \pm \sqrt{2} c$
Asymptotes	none	none	$\frac{x}{a} = \pm \frac{y}{b}$	x=0,y=0

4:1-62	
e ² , ³ / ₄	
6 4	
C= + \(\frac{3}{4}\) \(\frac{3}{4}\)	
6 74 : - 12	
00001	

$$\frac{\alpha}{e} = \frac{8\sqrt{3}}{3}$$
Sub in e
value calculated
$$\frac{\alpha}{2} = \frac{8\sqrt{3}}{3}$$
Ond with out
$$\frac{\sqrt{3}}{2}$$


$$Q: \frac{8\sqrt{3}}{3} \times \frac{\sqrt{3}}{2} = \frac{8(3)}{6} : \frac{24}{6} : 4$$

$$a=4 \Rightarrow a^{2}=16$$

 $a=2b + 4:2b \Rightarrow b:2 \Rightarrow b^{2}=4$

$$\frac{x^2}{16} + \frac{y^2}{4} = \frac{1}{11}$$
 in form $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

b. calwiate foci of ellipse :

C. Due to symmetry of Ellipse, 4 possible coordinates we are trying to calculate

Ut 1) be written in parametric form, (acoso, bsing)

= (40059, 25mg)

austence from (4000, 2010) to (2/3,0) is 2

1660529 - 1643 was + 12 + 451029 = 4

4 ws2 + 4 sm2 + 12 cos2 - 16x3 cos + 8=0

4 [ws2 + sin2 s] + 12w2 2 - 16 18 ws 2 + 8 = 0

120020 - 16V3 WOW + 12:0 7 +4

3005 9 - 4 13 005 9 + 3 = 0

(3WSD-43)(WSD-43):0

 $8v \cdot 620$ $v \cdot \frac{8v}{3} \cdot 620$

